Training on Fingerprint Pattern Recognition

Nanang Syahroni (JICA Expert on Digital Communication) EEPIS – Surabaya – Indonesia nanang@eepis-its.edu

Electronics & Telecommunication Department - Tumba College of Technology

Fingerprint Application

Fingerprint recognition applications are divided here into three categories:

- Forensic applications have used forensic experts.
- Government applications have used token-based systems.
- Commercial applications have used knowledgebased (password) systems.

Three major of critical application

Forensic	Government (Civil)	Commercial	
Corpse Identification	Social Security	Computer Network Logon	
Criminal Investigation	Welfare Disbursement	Electronic Data Security	
Missing Children	Border Control	e-Commerce	
	Passport Control	Internet Access	
	National ID card	ATM, Credit Card	
	Driver License	Physical Access Control	
	Credentialing	Cellular Phones	
	9222	Personal Digital Assistant	
		Medical Records Management	
		Distance Learning	

13/06/2011

Various applications of automatic user recognition

Feature Type

- The lines that flow in various patterns across fingerprints are called ridges and the spaces between ridges are valleys, these ridges that are compared between one and another when matching.
- The more microscopic of the approaches is called minutia matching. The two minutia types are a ridge ending and bifurcation. An ending is a feature where a ridge terminates.

ending

bifurcation

13/06/2011

Pattern Matching

- Fingerprint patterns are: arch, loop, and whorl. Fingerprint landmarks are: core and delta.
- The more macroscopic approach to matching is called global pattern matching or simply pattern matching. In this approach, the flow of ridges is compared at all locations between a pair of fingerprint images.
- Two other features are sometimes used for matching: core and delta. The core can be thought of as the center of the fingerprint pattern. The delta is a singular point from which three patterns deviate. The core and delta locations can be used as landmark locations by which to orient two fingerprints for subsequent matching.

Feature Extraction

- Sequence of fingerprint feature extraction processing steps are: 1) Original, 2) Orientation, 3) Binarized, 4) Thinned, 5) Minutiae, and 6) Minutiae graph (template).
- Feature attributes are determined for each valid minutia found. These consist of: ridge ending or bifurcation type, the (x,y) location, and the direction of the ending or bifurcation.

Feature Processing Steps

13/06/2011

False Minutiae Structures

	J	1	A
Break	Spur	Merge	Triangle
1	\sim	F	A
Multiple Break	Bridge	Break and Merge	Ladder
1	(1)	HH -	1.1
Lake	Island	Wrinkle	Dot

Minutiae (Template) Size

- The image is reduced in intensity levels from the original 256 (8-bit pixels) to 2 (1-bit pixels).
- The result of the feature extraction stage is what is called a minutia template (minutia graph). This is a list of minutiae with accompanying attribute values.
- An approximate range on the number of minutiae found at this stage is from 10 to 100. If each minutia is stored with type (1 bit), location (9 bits each for x and y), and direction (8 bits), then each will require 27 bits (say 4 bytes), and the template will require up to 400 bytes. 10

13/06/2011

Recognition Rate

- The ultimate measure of fingerprint system is recognition rate. This can be described by two values: FAR and FRR.
- The false acceptance rate (FAR) is the ratio of the number of pairs of different fingerprints found to match to the total number of match attempts.
- The false rejection rate (FRR) is the ratio of the number of pairs of the same fingerprint are found not to match to the total number of match attempts.
- FAR and FRR trade off against one another. That is, a system can usually be adjusted to vary these two results for the particular application, however decreasing one increases the other and vice versa.

- and less desirable recognition performance.
- The 3 dotted curves are of real data measuring the performance of 3 commercial AFIS.

13/06/2011

References

- Davide Maltoni, Dario Maio, Anil K. Jain, and Salil Prabhakar (editors), *Handbook of Fingerprint Recognition*, 2nd edition, Springer-Verlag, London, 2009.
- 2. Stan Z. Li and Anil K. Jain (editors), *Handbook of Face Recognition*, Springer, 2005.
- Frank Y. Shih, Image processing and pattern recognition : fundamentals and techniques, IEEE & John Wiley & Sons, 2010.

Morakoze

13/06/2011